The second largest eigenvalue and vertex-connectivity of regular multigraphs
نویسندگان
چکیده
منابع مشابه
Graphs with small second largest Laplacian eigenvalue
Let L(G) be the Laplacian matrix of G. In this paper, we characterize all of the connected graphs with second largest Laplacian eigenvalue no more than l; where l . = 3.2470 is the largest root of the equation μ3 − 5μ2 + 6μ − 1 = 0. Moreover, this result is used to characterize all connected graphs with second largest Laplacian eigenvalue no more than three. © 2013 Elsevier Ltd. All rights rese...
متن کاملA note on the largest eigenvalue of non-regular graphs
The spectral radius of connected non-regular graphs is considered. Let λ1 be the largest eigenvalue of the adjacency matrix of a graph G on n vertices with maximum degree ∆. By studying the λ1-extremal graphs, it is proved that if G is non-regular and connected, then ∆− λ1 > ∆+ 1 n(3n+∆− 8) . This improves the recent results by B.L. Liu et al. AMS subject classifications. 05C50, 15A48.
متن کاملOn the largest eigenvalue of non-regular graphs
We study the spectral radius of connected non-regular graphs. Let λ1(n,Δ) be the maximum spectral radius among all connected non-regular graphs with n vertices and maximum degree Δ. We prove that Δ− λ1(n,Δ)=Θ(Δ/n). This improves two recent results by Stevanović and Zhang, respectively. © 2007 Elsevier Inc. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2020
ISSN: 0166-218X
DOI: 10.1016/j.dam.2019.10.010